Improved Feasible Solution Algorithms for High Breakdown Estimation

نویسندگان

  • Douglas M. Hawkins
  • David J. Olive
چکیده

High breakdown estimation allows one to get reasonable estimates of the parameters from a sample of data even if that sample is contaminated by large numbers of awkwardly placed outliers. Two particular application areas in which this is of interest are multiple linear regression, and estimation of the location vector and scatter matrix of multivariate data. Standard high breakdown criteria for the regression problem are the least median of squares (LMS) and least trimmed squares (LTS); those for the multivariate location/scatter problem are the minimum volume ellipsoid (MVE) and minimum covariance determinant (MCD). All of these present daunting computational problems. The ‘feasible solution algorithms’ for these criteria have been shown to have excellent performance for text-book sized problems, but their performance on much larger data sets is less impressive. This paper points out a computationally cheaper feasibility condition for LTS, MVE and MCD, and shows how the combination of the criteria leads to improved performance on large data sets. Algorithms incorporating these improvements are available from the author’s Web site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stochastic model for the cell formation problem considering machine reliability

This paper presents a new mathematical model to solve cell formation problem in cellular manufacturing systems, where inter-arrival time, processing time, and machine breakdown time are probabilistic. The objective function maximizes the number of operations of each part with more arrival rate within one cell. Because a queue behind each machine; queuing theory is used to formulate the model. T...

متن کامل

LP problems constrained with D-FRIs

In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Dombi family of t-norms is considered as fuzzy composition. Dombi family of t-norms includes a parametric family of continuous strict t-norms, whose members are increasing functions of ...

متن کامل

CONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM

A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...

متن کامل

A Heuristic Approach for Solving LIP with the Optional Feasible or Infeasible Initial Solution Points

An interactive heuristic approach can offer a practical solution to the problem of linear integer programming (LIP) by combining an optimization technique with the Decision Maker’s (DM) judgment and technical supervision. This is made possible using the concept of bicriterion linear programming (BLP) problem in an integer environment. This model proposes two bicriterion linear programs for iden...

متن کامل

CA Model of Optimization Allocation for Land Use Spatial Structure Based on Genetic Algorithm

The optimized allocation for land use spatial structure is not only an important method to promote an effective and intensive use for land resources. In view of the existing model methods, most them lacking researches in the optimization allocation for spatial pattern of land use. In this paper there has been proposed a multi-objectives optimization method based on improved GA, in term of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999